- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Guskind, Julia (3)
-
Almashaqbeh, Ghada (1)
-
Finkbeiner, Colin (1)
-
Krawec, Walter O (1)
-
Krawec, Walter O. (1)
-
Najd, Mohamed E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 2, 2026
-
Guskind, Julia; Krawec, Walter O. (, IEEE QCE)Semi-quantum cryptography involves at least one user who is semi-quantum or ``classical'' in nature. Such a user can only interact with the quantum channel in a very restricted way. Many semi-quantum key distribution protocols have been developed, some with rigorous proofs of security. Here we show for the first time that quantum random number generation is possible in the semi-quantum setting. We also develop a rigorous proof of security, deriving a bound on the random bit generation rate of the protocol as a function of noise in the channel. Our protocol and proof may be broadly applicable to other quantum and semi-quantum cryptographic scenarios where users are limited in their capabilities.more » « less
-
Guskind, Julia; Krawec, Walter O (, Quantum Science and Technology)Abstract Mediated semi-quantum key distribution involves the use of two end-users who have very restricted, almost classical, capabilities, who wish to establish a shared secret key using the help of a fully-quantum server who may be adversarial. In this paper, we introduce a new mediated semi-quantum key distribution protocol, extending prior work, which has asymptotically perfect efficiency. Though this comes at the cost of decreased noise tolerance, our protocol is backwards compatible with prior work, so users may easily switch to the old (normally less efficient) protocol if the noise level is high enough to justify it. To prove security, we show an interesting reduction from the mediated semi-quantum scenario to a fully-quantum entanglement based protocol which may be useful when proving the security of other multi-user quantum key distribution protocols.more » « less
An official website of the United States government
